Copper brush with copper doorstep

Conductive copper brushes have a surface resistivity of 10^2 - 10^4 and are perfect to use when you need to make flexible conductive contact. The conductive brush is made of conductive fiber material that offers far greater control of electricity, and superiority in overall performance. A highly conductive copper brush with a copper doorstep is generally used to convert a standard door to an EMI / RFI shielded door. This is suitable for applications with a performance up to 40-60 dB for example hospitals, EEG, EMG and measurements rooms. The copper brush and doorstep can be made in any desired length. This allows you to match the width of your door.

Shielding performance
Operation Range E field 9 kHz to 40 GHz. Attenuation depends on the length of the strip and the contact-pressure on the contact surface (the copper doorstep).

Technical details
The brush consists of an aluminum h profile with highly conductive spring copper wires clamped in the h profile.

Standard copper brush/doorstep sizes

<table>
<thead>
<tr>
<th>Length</th>
<th>Length of the copper brush and doorstep according to customer specs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brush height</td>
<td>25mm, 50 mm and 75 mm. Standard 25 mm.</td>
</tr>
</tbody>
</table>

Example drawing of wooden modified EMI/RFI shielding door
Below you will find a drawing to illustrate the usage of the copper brush and the copper doorstep. The drawing illustrates the modification of a standard wooden door to a EMI/RFI shielded door.

![Example drawing of wooden modified EMI/RFI shielding door](image-url)